This Presentation is provided to you by: WeldCanada.com Industry Standard Welding Procedures Software CSA, AWS, ASME and API Welding Codes

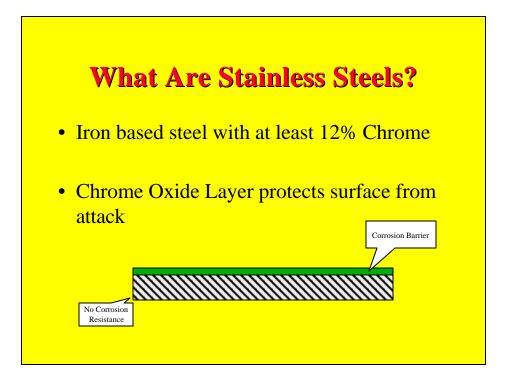
Canadian Welding Symposium

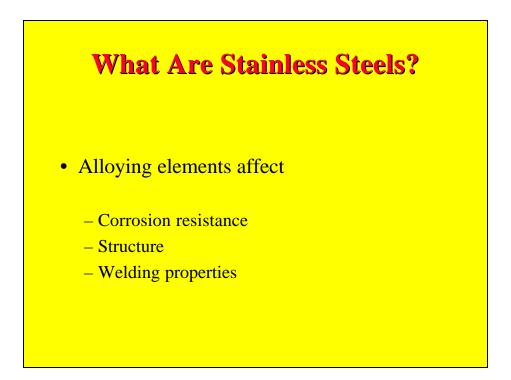
Stainless Steel Welding

September 29, 2004

Frank Babish

Technical Support

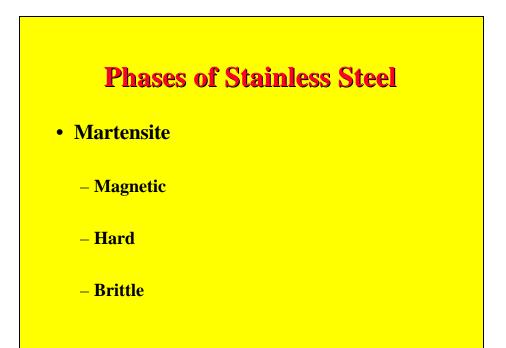

- Website- www.steel.sandvik.com/us
- Welding Hotline- 800-781-9449
- Technical Papers
- Industry Conferences
- End User Contact
- Engineering Company Contact
- Technical Seminars


Stainless Steel Welding Metallurgy

- What are Stainless Steels
- Phases
- Corrosion
- Categories & Weldability
- General Welding Recommendations
- Common Problems and Causes

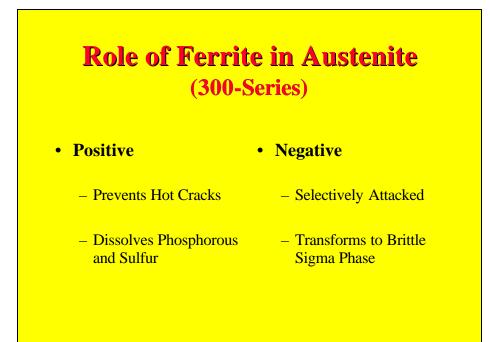
Stainless Steel Welding Metallurgy

- What are Stainless Steels
- Phases
- Corrosion
- Categories & Weldability
- General Welding Recommendations
- Common Problems and Causes

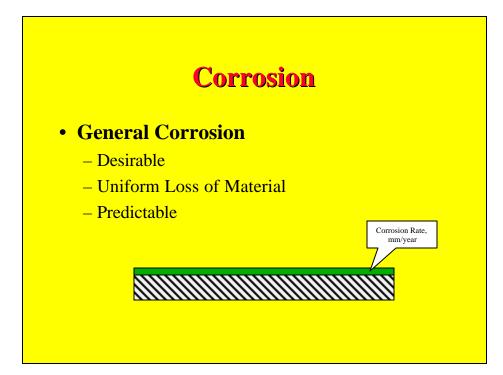

		Major Groups			
Group	Chrome	Nickel	Mo		
Austenitic	12-27	7-25	0-5		
EG: 308L Ferritic	12-30(C<.1)	-	-		
EG: 409Cb Martensitic	12-18(C .1530)	-	-		
EG: 410 Duplex	18-25	4-9	0-3		
EG: 2209 Specialty Superaustenitics	> 20	Various	Vario		

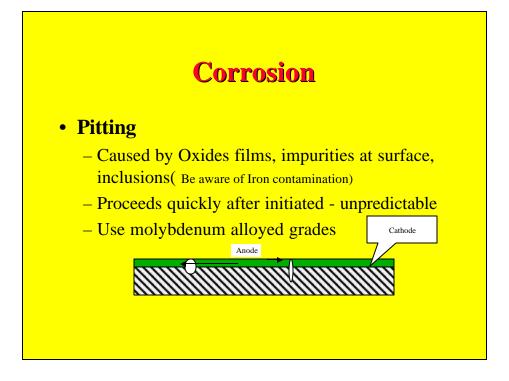
Phases of Stainless Steel

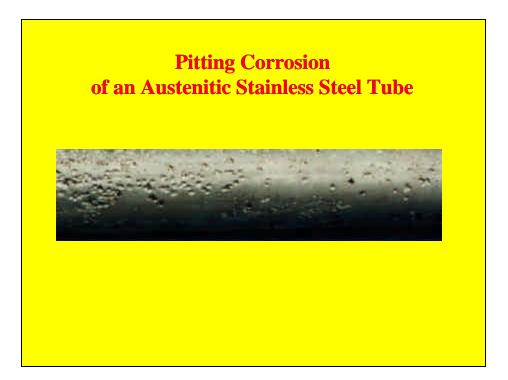
• Austenite


- Non-Magnetic
- Ductile
- Strong
- High Toughness at Low Temperature

Phases of Stainless Steel

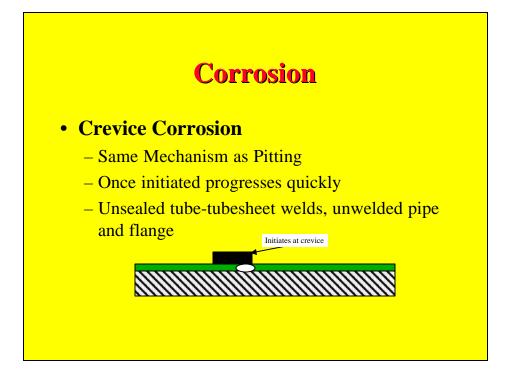

• Ferrite

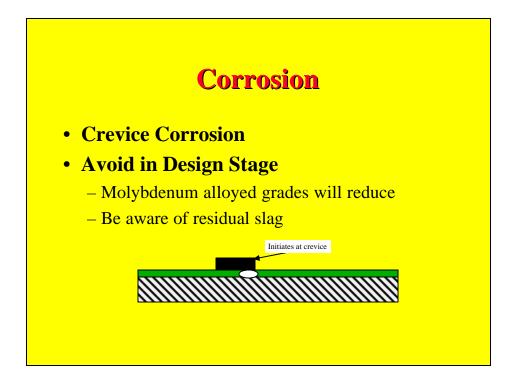

- Magnetic
- Dissolves Impurities
- Transforms to Sigma Phase 1020-1650°F



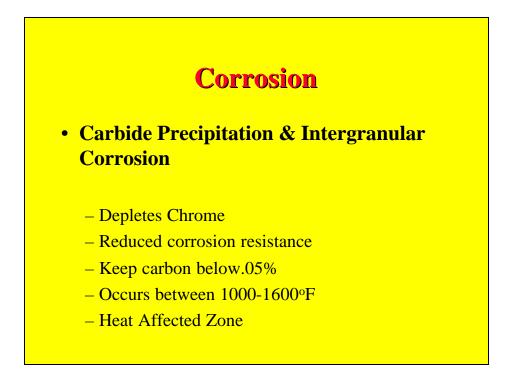
Stainless Steel Welding Metallurgy

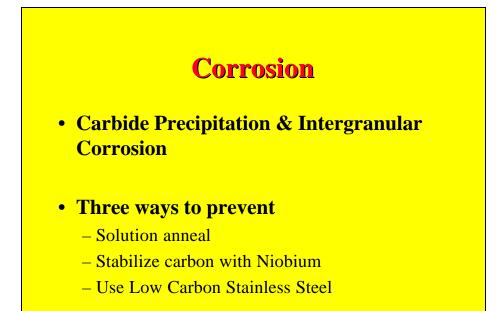
- What are Stainless Steels
- Phases
- Corrosion
- Categories & Weldability
- General Welding Recommendations
- Common Problems and Causes

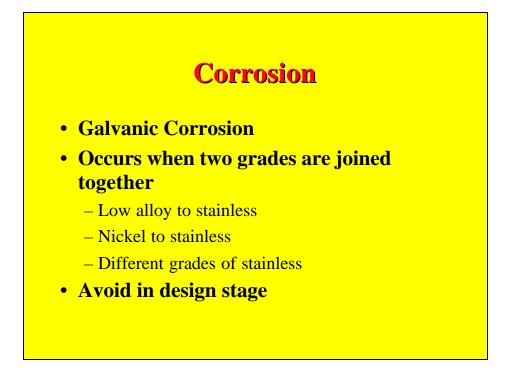




Pitting Corrosion Micrograph of an Austenitic Stainless Steel Tube




		e-Nun Illoy Compa		
	Cr	Mo	Ν	PRE
304L	18.4			18.4
316L	17	2.2		24.3
2304	23		0.1	24.6
2205	22	3	.14	34.1
2507	25	4	.25	42.2
PRE = Cr + 3.3 xMo + 16 xN				



Stainless Steel Welding Metallurgy

- What are Stainless Steels
- Phases
- Corrosion
- Categories & Weldability
- General Welding Recommendations
- Common Problems and Causes

Major Group Weldability			
Group	Ferrite	Weldability	Comments
Austenitic	3-15	Excellent	User Friendly
Ferritic	100	Good	Loss of Toughness
Martensitic	0	Difficult	Crack Sensitive
Duplex EG: 2209	50	Caution	Follow Welding Recommendations
specialty uperaustenitics G: 383	0	Caution	Crack Sensitive

Stainless Steel Welding Metallurgy

- What are Stainless Steels
- Phases
- Corrosion
- Categories & Weldability
- General Welding Recommendations
- Common Problems and Causes

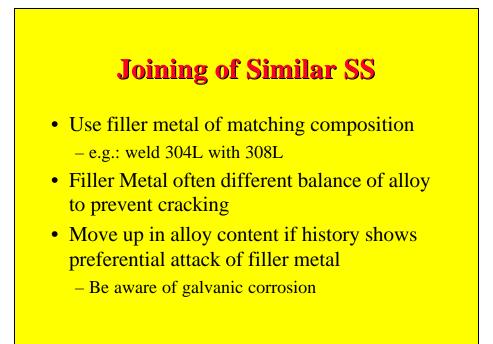
- Excellent Weldability
- No Preheat
- No Postweld Heat Treat
- 50% greater Thermal Expansion over Carbon Steel
- Use Low Heat Input – (amps x volts x 60)/Travel (in/min)
- 300 Deg Interpass Temp

Ferritic Stainless Steels Weldability (400 Series)

- Not as weldable as Austenitic
- Preheat on thick sections
- Grain Growth (Loss of toughness)
- Carbide Precipitation
- Use matching filler metal
- Can often use 300 Series or Nickel to weld

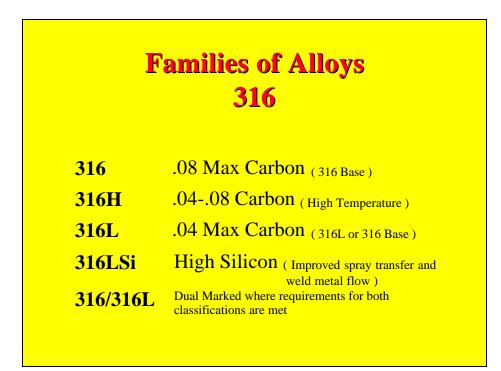
Martensitic Stainless Steels Weldability (400 Series)

- Hardenable
- Preheat
- Stress Relief
- Slow Cool
- Keep Stresses Low
- Can often use 300 Series or Nickel to weld

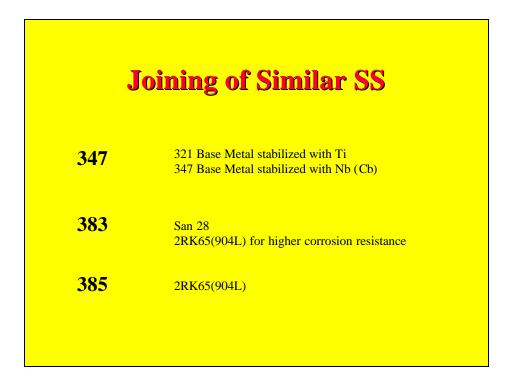

Duplex Stainless Steels Weldability (300 Series)

- Good Weldability
- No Preheat
- No Postweld Heat Treatment
- Stay within recommended Heat Input – (amps x volts x 60)/Travel (in/min)
- Use larger root than 300 Series
- Less good flow than 300 Series

Superaustenitic Stainless Steels Weldability (300 Series)


- Somewhat Difficult Weldability
- No Preheat
- No Postweld Heat Treat
- Use Low Heat Input
 - (amps x volts x 60)/Travel (in/min)
- Use Flat to Convex Weldbeads
- Interpass Temp 300 Deg F

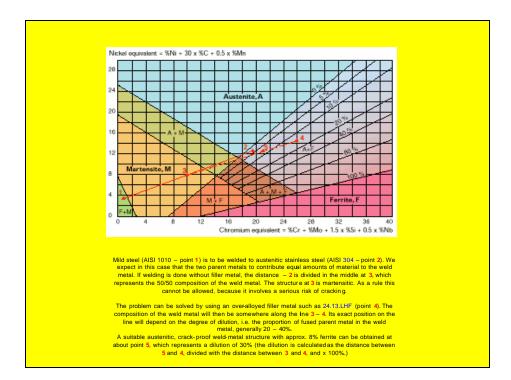
- Joining of Similar Base Metals
- Joining of Stainless Steel to Low or Unalloyed Base Materials
- Joining of Stainless Steel to Nickel Base
- Dissimilar Joining of Stainless Steel
- Welding Hints
- Common Problems and Causes


Families of Alloys 308

308	.08 Max Carbon (304 Base)
308H	.0408 Carbon (High Temperature)
308L	.04 Max Carbon (304L or 304 Base)
308LSi	High Silicon (Improved spray transfer and weld metal flow)
308/308L	Dual Marked where requirements for both classifications are met

Joining of Similar SS

2209	Duplex Base Metals 3RE60,2205,2304
307	307 Base Metal (VW)
310	310 Base Metal
317L	317L Base Metal 316L Base Metal for higher corrosion resistance


- Joining of Similar Base Metals
- Joining of Stainless Steel to Low or Unalloyed Base Materials
- Joining of Stainless Steel to Nickel Base
- Dissimilar Joining of Stainless Steel
- Welding Hints
- Common Problems and Causes

Families of Alloys 309

309	.08 Max Carbon (304 to Low Alloy)
309L	.04 Max Carbon (304,304L to Low Alloy)
309LHF	High Ferrite (Problem solver for cracking)
309LSi	High Silicon(Improved spray transfer and weld metal flow)
309LMo	316L weld deposit when overlaying low alloy steel
309LCb	347 weld deposit when overlaying low alloy steel

Dissimilar Joining SS to Low Alloy

308	Do not use , under alloyed, forms brittle welds due to formation of Martensite. Risk of cracking.
309 Type	Overalloyed to account for dilution.
312	Overalloyed to account for dilution. Avoid using for high temperature applications over 750°F
310	Overalloyed to account for dilution. Good for high temperature over 750°F
Low Alloy	Do not use, forms brittle welds. High risk of cracking
Nickel	Excellent for High Temperature over 750°F

- Joining of Similar Base Metals
- Joining of Stainless Steel to Low or Unalloyed Base Materials
- Joining of Stainless Steel to Nickel Base
- Dissimilar Joining of Stainless Steel
- Welding Hints
- Common Problems and Causes

- Joining of Similar Base Metals
- Joining of Stainless Steel to Low or Unalloyed Base Materials
- Joining of Stainless Steel to Nickel Base
- Dissimilar Joining of Stainless Steel
- Welding Hints
- Common Problems and Causes

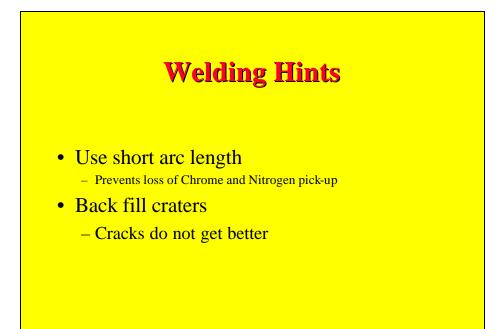
Dissimilar Joining SS to SS

- Dissimilar Joining Chart in Catalog
- Generally use the lower alloyed of the two base metals(e.g. use 308 to join 304 to 316)

- Joining of Similar Base Metals
- Joining of Stainless Steel to Low or Unalloyed Base Materials
- Joining of Stainless Steel to Nickel Base
- Dissimilar Joining of Stainless Steel
- Welding Hints
- Common Problems and Causes


Welding Hints

Post Weld Cleaning


- Optimizes corrosion resistance by ensuring a good Chrome Oxide film
- Remove all slag and spatter which form crevices
- Use Stainless Steels Tools – Avoid contamination with Carbon Steel
- Use uncontaminated media
- Remove Heat Tint

- Post Weld Cleaning Methods
 - Pickling, Grinding, Blasting, Brushing, Polishing
- The Finer the Surface, the better the Corrosion Resistance

Common Problems and Causes Cracking

• Observe Type of Crack:

- Center of Weld dilution problem
 - Use higher alloy
 - Change technique to avoid concave beads
 - Lower Heat Input
- Across the Weld or Random too high stresses
 - More frequent tacks
 - Step welding
 - Too much distortion from too high heat input
 - (Amps x Volts x 60) / Travel Speed

Common Problems and Causes Cracking

- Observe Type of Crack:
 - Heat Affected Zone Base metal related
 - Machinable Grade being used?
 - Too High Heat input
 - Carbon Migration during stress relief

Common Problems and Causes Rust


- Lack of Post Weld Cleaning
- Use of Contaminated Cleaning Equipment
- Contaminated Fixtures or Handling Equipment
- Plasma Cutting with Air or Nitrogen

Common Problems and Causes Undercut

- Wrong Welding Speed
- Grounds
- Arc Blow
- Low Sulfur Base Metal- use HiSil Consumables

Common Problems and Causes

- Distortion- Heat Input, Step Welding
- Arc Blow- Grounding, use AC
- Slag Inclusions
 - Welding over Slag
 - Use gravity to advantage, not disadvantage
- Poor Wetting
 - Weld Metal Composition
 - Gas Selection

